k^2=121/25

Simple and best practice solution for k^2=121/25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2=121/25 equation:



k^2=121/25
We move all terms to the left:
k^2-(121/25)=0
We add all the numbers together, and all the variables
k^2-(+121/25)=0
We get rid of parentheses
k^2-121/25=0
We multiply all the terms by the denominator
k^2*25-121=0
Wy multiply elements
25k^2-121=0
a = 25; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·25·(-121)
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12100}=110$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-110}{2*25}=\frac{-110}{50} =-2+1/5 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+110}{2*25}=\frac{110}{50} =2+1/5 $

See similar equations:

| 20+0.5x=20x | | 1.5+x/3=-3.3 | | x/6-5=19 | | X(x+10)+(2x-10)=180 | | 2b=3.8 | | 3(-3x+2)=42 | | 47+(x+8)=180 | | –19j+13j−9=15+2j | | 6x+9+4x=39 | | 1x+16=x | | -1+x-2x=-4 | | x-9+4x+x=180 | | 9c2-18c+5=0 | | -3x-7=6x-79 | | 1.5=4/3x+2/3 | | v+5v+4v−5=5 | | p2-16=-16 | | 1/5(15x-20)=3x-20 | | (7r-6)+(4r-3)+90=180 | | 16(3.5)+4y=56 | | x^2=435 | | 6(-5-3x)=150 | | (6a+4)+(4a+6)=90 | | (9x-5)+90+(8x-7)=180 | | (3x+1)+59=180 | | 15-13x=0.75-0.50x | | 10-4x=6x+70 | | (z+3)+98=180 | | 14=2(9+x) | | 10-0.875x=9+0.75x | | 4x+5*2+6/7=80 | | 11-7x=5x+3(1×2x) |

Equations solver categories